	INDIAN	SCHOOL AL WADI AL KABIR	
Class: XII		ENT: SCIENCE 2024 - 25 CHEMISTRY	Date:06.05.2024
Worksheet No:02 with answers	TOPIC: AI	COHOLS, PHENOLS & ETHERS	Note: A4 FILE FORMAT
NAME OF THE ST	FUDENT	CLASS & SEC:	ROLL NO.

MULTIPLE CHOICE QUESTIONS (1 MARK EACH)

1	Iso-propyl alcohol is (NCERT)
	(a) CH_2 — CH — CH_2 — OH (b) H_3C — C — OH CH_3 CH_3
	(c) CH_3 — CH — OH (d) CH_3 — CH — OH CH_3 CH_2 — CH_3
2	The major product of the following reaction is $ \begin{array}{ccc} \text{CH}_3\text{CH}{=}\text{CHCO}_2\text{CH}_3 & \xrightarrow{\text{LiAlH}_4} & \text{(2019)} \\ \text{(a)} & \text{CH}_3\text{CH}{=} & \text{CHCH}_2\text{OH} \\ \text{(b)} & \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH} \\ \text{(c)} & \text{CH}_3\text{CH}_2\text{CH}_2\text{CO}_2\text{CH}_3 \\ \text{(d)} & \text{CH}_3\text{CH}_2\text{CH}_2\text{CHO} \end{array} $

3	The reduction,
	HC $COCH_3$ HOH_2C $COCH_3$
	can be achieved by using
	(a) $NaBH_4$ (b) $LiAlH_4$ (c) $CuO \cdot CuCN_2O_4$ (d) None of these
4	ОН
	${ m CH_3CH_2}$ — ${ m C}$ — ${ m CH_3}$ cannot be prepared by
	Ph (2019)
	(a) CH ₃ CH ₂ COCH ₃ + PhMgX
	(b) PhCOCH ₃ + CH ₃ CH ₂ MgX (c) PhCOCH ₂ CH ₃ + CH ₃ MgX
	(d) $HCHO + PhCH(CH_3) CH_2MgX$
5	In the following reaction, identify X .
	Methyl magnesium bromide + $X \longrightarrow 2$ -methyl
	propan-2-ol (NCERT)
	(a) propanol (b) ethanone
	(c) propanone (d) butane
6	What is the correct order of reactivity of alcohols in
	the following reaction?
	R —OH + HCl $\xrightarrow{\operatorname{ZnCl}_2}$ R —Cl + H ₂ O
	(a) $1^{\circ} > 2^{\circ} > 3^{\circ}$ (b) $1^{\circ} < 2^{\circ} > 3^{\circ}$
	(c) $3^{\circ} > 2^{\circ} > 1^{\circ}$ (d) $3^{\circ} > 1^{\circ} > 2^{\circ}$

_	
7	The major product of the following reaction is $\mathrm{HO}_{\sim}\mathrm{CH_2CH_3}$
	$0 \xrightarrow{\text{H}_2\text{SO}_4} $
	CH_2CH_3 CH_2CH_3
	(a) (b) O
	$CH=CH_2$ $CHCH_3$
	(c) (d) O
8	Reaction of tertiary butyl alcohol with hot Cu at
	300 °C produces (a) butanol
	(b) butanal (c) 2-butene
	(d) 2-methylpropene
9	IUPAC name of m-cresol is
	OH
	СООН
	(a) 0-hydroxybenzoic acid
	(b) 2-hydroxybenzoic acid
	(c) Phenol-2-carboxylic acid (d) 6-hydroxybenzoic acid
	(a) o njaroaj perizote acia
	<u>I</u>

10.	Mark the correct order of decreasing acid strength of the following compounds.
	ОН ОН ОН
	I. III. OCH ₃
	NO_2
	ОН ОН
	IV. V. V.
	$\rm OCH_3$
	(a) $V > IV > II > I > III$ (b) $II > IV > I > III > V$
	(c) $IV > V > III > II > I$ (d) $V > IV > III > II > I$
11.	Which of the following is most acidic? (2024) (a) Benzyl alcohol (b) Cyclohexanol (c) Phenol (d) p- Chlorophenol
12	Anisole on reaction with HI gives: (2024)
	(a) (b)
	I OH
	+ CH ₃ COOH + C ₂ H ₅ I
	(c) (d)
	I OH
	$+ C_2H_5OH$ $+ CH_3I$

13.	Ethanol on heating with conc. H ₂ SO ₄ at 413 K gives: (202	4)
	(a) C ₂ H ₅ OSO ₃ H	
	(b) C ₂ H ₅ -O-CH ₃	
	(c) C ₂ H ₅ -O-C ₂ H ₅	
	(d) CH ₂ =CH ₂	
14.	Match the reagents required for the given reactions:	
	Column A	Column B
	1. Oxidation of primary alcohols to aldehydes	a. NaBH4
	2. Butan-2-one to Butan-2-ol	b. PCC
	3. Bromination of Phenol to 2, 4, 6- Tribromophenol	c. 85% phosphoric acid at 440 K
	4. Dehydration of propan-2-ol to propene	d. Bromine water
15.	Out of the following alkenes, the one that will produc	e tertiary butyl alcohol on acid
	catalysed hydration is:	(2024)
	(a) CH ₃ CH ₃ CH=CH ₂	
	(b) CH ₃ CH=CH ₂	
	(c) CH ₃ -CH=CH-CH ₃	
	(d) $(CH_3)_2C = CH_2$	

Read the given passage and answer the questions that follow: (1 MARK EACH)

Methanol, CH_3OH , also known as 'wood spirit', was produced by the destructive distillation of wood. Today, most of the methanol is produced by catalytic hydrogenation of carbon monoxide at highpressure and temperature and in the presence of $ZnO - Cr_2O_3$ catalyst.

$$CO + 2H_2 \xrightarrow{ZnO-Cr_2O_3} CH_3OH$$

573-673 K

Methanol is a colourless liquid and boils at 337 K. It is highly poisonous. Ingestion of even small quantities of methanol can cause blindness and large quantities cause even death. Methanol is used as a solvent in paints, and varnishes and chiefly for making formaldehyde.

- 16. What happens when methanol is subjected to PCC?
- 17. Give two applications of methanol.
- 18. Mention the IUPAC name of the compound formed when methanol is subjected to thionyl chloride.

- 19. Give one commercial preparation of methanol.
- $20. \ Which is readily soluble in water-methanol or but an -1-ol.$

Question – Answer Type: (Previous Years' Board Questions)

21	Convert:	1
	OH	
	A. A. A. G.	
	Aspirin	
22	Give a reason:	1
	Acid catalysed dehydration of t-butanol is faster than	
	that of <i>n</i> -butanol.	
23	Give a chemical test to distinguish: Ethanol and Propan-2-ol	1
24	Complete the following:	1
	ОН ОН	
	↓ ,CHO	
	\longrightarrow \longrightarrow	
	~ ~	
25	Complete the equation:	1
	$(CH_3)_3CBr + NaOMe \rightarrow$	
26	Write the major product in the following equations:	2
	(i) $CH_3 - CH_2OH \xrightarrow{PCl_5}$?	
	ОН	
	anhyd, AlCla	
	(ii) $+ CH_3 - Cl \xrightarrow{\text{anhyd. } AlCl_3}$?	
27	$CH_3 - Cl + CH_3CH_2 - ONa \rightarrow ?$	2
	a. Identify the name of the reaction.b. What are the products formed.	
28	How are the following conversions carried out ?	2
	(i) Benzyl chloride to Benzyl alcohol	
	(ii) Ethyl magnesium chloride to Propan-1-ol	
29	Convert the following	2
	a.	
	Propene to Propan-2-ol	
	b. Propene to Propan-1-ol	

30	Write the IUPAC name of the given compound:	2
	$HO - CH_2 - CH = C - CH_3$	
	$_{ m CH_3}$	
	Name the reagents used in the following reactions:	
	$CH_3 - CHO \xrightarrow{?} CH_3 - CH - CH_3$	
	OH	
31	Predict the products of the following reactions:	3
	(i) $CH_3 - CH = CH_2 \xrightarrow{i) B_2H_6} ?$	
	(ii) $C_6H_5 - OH \xrightarrow{Br_2 (aq)} ?$	
	(iii) $CH_3CH_2OH \xrightarrow{Cu/573 K}$?	
32	(a) Write the major product(s) in each of the following reactions:	3
	$_{ m I}^{ m CH_3}$	
	(i) $CH_3 - C - O - CH_3 + HI \longrightarrow$	
	CH_3	
	(ii) $CH_3 - CH_2 - CH - CH_3 \xrightarrow{Cu/573 \text{ K}}$	
	он	
	(iii) $C_6H_5 - OH \xrightarrow{(i)} \frac{CHCl_3 + aq \cdot NaOH}{(ii)} \xrightarrow{H^+}$	
33	Write the chemical reaction involved in the following reactions:	2, 1
	(i) Kolbe's reaction	
	(ii) Friedal-Crafts acetylation of anisole	
	Distinguish between:	
	(i) Ethanol and phenol	
34	What happens when	3
	(i) phenol reacts with Bromine water ?	
	(ii) ethanol reacts with CH ₃ COCl/pyridine?	
	(iii) anisole reacts with HI?	
	Write the chemical equations involved in the above reactions.	

35	Write IUPAC name of the following compound:	3
	NO_2	
	NO ₂	
	Explain mechanism for hydration of acid catalyzed ethene:	
	$CH_2 = CH_2 + H_2O \xrightarrow{H^+} CH_3 - CH_2 - OH$	
36	Which of the following reactions are feasible?	1 [2023]
	(a) $CH_3CH_2Br + Na^+O^-C(CH_3)_3 \rightarrow CH_3CH_2-O-C(CH_3)_3$	
	(b) $(CH_3)_3 C - Cl + Na^+ O^- CH_2 CH_3 \rightarrow CH_3 CH_2 - O - C(CH_3)_3$	
	(c) Both (a) and (b)	
	(d) Neither (a) nor (b)	
37	Write the chemical equation involved in the following:	2 [2023]
	(a) Kolbe's reaction (b) Williamson synthesis	
38	(b) Williamson synthesis (a) (i) Write the mechanism of the following reaction:	2+1
	$2\text{CH}_3\text{CH}_2\text{OH} \xrightarrow{\text{H}^+} \text{CH}_3 - \text{CH}_2 - \text{O} - \text{CH}_2 - \text{CH}_3 + \text{H}_2\text{O}$	[2023]
	(ii) Why ortho-nitrophenol is steam volatile while para-nitrophenol is	
	not ?	
	OR	
	(b) What happens when	1+1+1 [2023]
	(i) Anisole is treated with $\mathrm{CH_3Cl/anhydrous}\ \mathrm{AlCl_3}$?	
	(ii) Phenol is oxidised with Na ₂ Cr ₂ O ₇ /H ⁺ ?	
	(iii) $(CH_3)_3 C - OH$ is heated with Cu/573 K?	
	Write chemical equation in support of your answer.	

1		ANSWER KEY
3	1	С
4	2	a
S	3	a
6	4	d
6	5	С
8		С
9 b 10 b 11 d 11 d 12 d 13 c 14 1-b, 2-a, 3-d, 4-c 15 d 16 Methanal 17 paints, varnishes 18 Chloromethane 19 CO + 2H ₂ ZnO-Cr ₂ O ₃ CtH ₂ OH 200-300 atm 573-673 K 20 methanol (lower carbon chain) 21 OH NaOH ONA OH CHCCls, + aq NaOH OH CHCls, + aq NaOH CHCls	7	a
10 b 11 d 12 d 13 c 14 1-b, 2-a, 3-d, 4-c 15 d 16 Methanal 17 paints, varnishes 18 Chloromethane 19 CO + 2H₂ Zno-Cro₀ CH₂OH Sr3-673 K 20 methanol (lower carbon chain) 21 OH NaOH OH CHCl₃ + aq NaOH Sancylaldchyde 22 Hint: T. alcohols are more stable than p. alcohols 23 Hint: Lucas test 24 CH₃ CH₂ + aq NaOH Sancylaldchyde 25 CH₃ CH₃ CH₂ - Br + CH₃ONa Elmmuton CH₃ CH₂ CH₃ CH₃ CH₂ CH₃	8	d
11	9	b
12 d 13 c 14 1-b, 2-a, 3-d, 4-c 15 d 16 Methanal 17 paints, varnishes 18 Chloromethane 19 CO + 2H₂ Zno-Cr₂O₃ 200.300 atm 573-673 k 20 methanol (lower carbon chain) 21 OH NaOH OH CH,COOH (CH,CO),O OCOCH, (II) H 10 CH,COOH (Salicylic acid) 22 Hint: T. alcohols are more stable than p. alcohols 23 Hint: Lucas test 24 OH CHCl₃+ aq NaOH OH CHCOH (Salicylic acid) 25 CH₃	10	b
13	11	d
14	12	d
15 d 16 Methanal 17 paints, varnishes 18 Chloromethane 19 CO + 2H ₂ ZnO-Cr ₂ O ₃ CH ₃ OH 273-673 K 20 methanol (lower carbon chain) 21 OH NaOH NaOH NaOH NaOH NaOH NaOH NaOH Na	13	С
16 Methanal 17 paints, varnishes 18 Chloromethane 19 CO + 2H ₂ ZnO-CpO ₃ cth CH ₃ OH 200-300 atm 573-673 K 20 methanol (lower carbon chain) 21 OH NaOH ONA (i) CO ₂ (ii) H 2-Hydroxybenzoic acid (Salicylic acid) CH ₄ COOH (Salicylic acid) CH ₄ COOH (H ₄ COOH (Aspirita) 22 Hint: T. alcohols are more stable than p. alcohols 23 Hint: Lucas test 24 OH CHCl ₃ + aq NaOH CHCl ₃ + aq NaOH CH ₃ CCH	14	1-b, 2-a, 3-d, 4-c
17 paints, varnishes 18 Chloromethane 19 CO + 2H ₂ ZnO-Cr ₂ O ₃ ZnO-300 am CH ₃ OH 573-673 fK 20 methanol (lower carbon chain) 21 OH NaOH ONA (l) CO ₃ (li) H CHO,COOH (Salicylic acid) 22 Hint: T. alcohols are more stable than p. alcohols 23 Hint: Lucas test 24 OH CHCl ₃ + aq NaOH CHCl ₃ NaOH CHCl ₄ NaOH CHCl ₃ NaOH CHCl ₃ NaOH CHCl ₄ CHO Saucylaldehyde 25 CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CC = CH ₂ + CH ₃ OH + NaBr Isobutylene 26 i) CH ₃ CH	15	d
20 methanol (lower carbon chain) 21 OH NaOH ONA OH CH,COOH (Salicylic acid) 22 Hint: T. alcohols are more stable than p. alcohols 23 Hint: Lucas test 24 OH CHCl ₃ + aq NaOH OH CHCl ₂ NaOH CHCl ₃ NaCH CHCl ₃ NaOH CHCl ₃ NaOH CHCl ₃ NaOH CHCl ₃ NaCH CHCl ₃ NaOH NaOH NaBr Isobutylene	16	
20 methanol (lower carbon chain) 21 OH NaOH ONA (I) CO ₂ Hirt (CH ₂ CO) ₄ O) 22 Hint: T. alcohols are more stable than p. alcohols 23 Hint: Lucas test 24 OH CHCl ₃ + aq NaOH CHCl ₂ NaOH CH ₃	17	paints, varnishes
20 methanol (lower carbon chain) 21 OH NaOH OH CHCOOH (II) H' CHCO), O COCCH, (II) H' 2-Hydroxybenzoic acid (Salicylic acid) 22 Hint: T. alcohols are more stable than p. alcohols 23 Hint: Lucas test 24 OH CHCl ₃ + aq NaOH OH CHCl ₂ NaOH OH CHC 25 CH ₃ CH	18	Chloromethane
21 OH NaOH ONa OH COOH (CH,CO),O OCOCH, (CH,CO),O OCOCH, (CH,CO),O OCOCH, (CH,CO),O OCOCH, (CH,CO),O OCOCH, (Aspirin) OCOCH, (Aspirin) OCOCH, (Aspirin) OCOCH, (CH,CO),O OCOCH (CH,CO),O OCOCH (CH,CO),O (CH,CO),O OCOCH (CH,CO),O (CH,CO),O OCOCH (CH,CO),O	19	$CO + 2H_2 \xrightarrow{ZnO-Cr_2O_3} CH_3OH $ $573-673 \text{ K}$
22 Hint: T. alcohols are more stable than p. alcohols 23 Hint: Lucas test 24 OH CHCl ₃ + aq NaOH CH ₃	20	methanol (lower carbon chain)
23 Hint: Lucas test 24 OH CHCl ₃ + aq NaOH Intermediate CH ₃ OH OH OH OH OH OH	21	NaOH (i) CO ₂ (ii) H 2-Hydroxybenzoic acid (Salicylic acid) CH ₄ COOH CH ₄ COOH CH ₄ COOH
23 Hint: Lucas test 24 OH CHCl ₃ + aq NaOH Intermediate CH ₃ CH ₃ CH ₃ - C - Br + CH ₃ ONa Ehimination CH ₃ CH ₃ - C = CH ₂ + CH ₃ OH + NaBr Isobutylene 26 OH OH OH OH OH OH OH	22	Hint: T. alcohols are more stable than p. alcohols
25 $CH_{3} - C - Br + CH_{3}ONa \xrightarrow{\text{Elimination}} CH_{3} - C = CH_{2} + CH_{3}OH + NaBr$ $CH_{3} - C - Br + CH_{3}ONa \xrightarrow{\text{Elimination}} CH_{3} - C = CH_{2} + CH_{3}OH + NaBr$ $CH_{3} - C = CH_{3} + CH_{3}OH + NaBr$ $CH_{3} - C = CH_{3} + CH_{3}OH + NaBr$ $CH_{3} - C = CH_{3} + CH_{3}OH + NaBr$ $CH_{4} - CH_{3} + CH_{3}OH + NaBr$ $CH_{3} - C = CH_{3} + CH_{3}OH + $		=
$CH_{3} - C - Br + CH_{3}ONa \xrightarrow{\text{Elimination}} CH_{3} - C = CH_{2} + CH_{3}OH + NaBr$ $CH_{3} - C = CH_{3} + CH_{3}OH + NaBr$ $CH_{3} - C = CH_{3} + CH_{3}OH + NaBr$ $CH_{3} - C = CH_{3} + CH_{3}OH + NaBr$ $CH_{3} - CH_{3} - CH_{3} + CH_{3}OH + NaBr$ $CH_{3} - CH_{3} + CH_{3} + CH_{3}$		OH CHCl ₃ + aq NaOH Intermediate OH CHCl ₂ NaOH OH CHO H Saucylaldehyde
іі) ОН ОН ОН	25	$CH_{3} - C - Br + CH_{3}ONa \xrightarrow{\text{Eliminatio n}} CH_{3}$ $CH_{3} - C = CH_{2} + CH_{3}OH + NaBr$ $CH_{3} - C = CH_{2} + CH_{3}OH + NaBr$ Isobutylene
CH ₃	26	$\begin{array}{c c} \text{OH} & \text{OH} & \text{OH} \\ \hline & + \text{CH}_3\text{Cl} & \xrightarrow{\text{Anhyd. AlCl}_3} & + & \hline \end{array}$

27	a. Williamson Synthesis
	b.
	CH ₃ Cl + CH ₃ CH ₂ -ONa → CH ₃ CH ₂ -O-CH ₃ + NaCl
28	CH ₂ Cl CH ₂ ONa CH ₂ OH H H CH ₃ CH ₂ OH CH ₃ CH ₂ OH CH ₃ CH ₂ OH
29	a.
	CH ₃ CH=CH ₂ + H ₂ O $\stackrel{H'}{\longleftrightarrow}$ CH ₃ -CH-CH ₃ b. $CH_3 - CH = CH_2 + (BH_3)_2 \longrightarrow CH_3 - CH_2 - CH_2BH_2$ Propene $\frac{CH_3 - CH = CH_2}{} + (CH_3 - CH_2 - CH_2)_2BH$ $\downarrow CH_3 - CH_2 - CH_2$ $(CH_3 - CH_2 - CH_2)_3B$ $CH_3CH_2CH_2OH + B(OH)_3 \stackrel{H_2O_2/OH^-}{\longleftrightarrow}$ Propan-1-ol Boric acid
30	3-Methylbut-2-en-1-ol CH ₃ MgBr/ H ₃ O ⁺
31	i) CH ₃ CH ₂ CH ₂ OH OH Br Br Br Br
32	iii) CH ₃ CHO a) i) (CH ₃) ₃ C-I + CH ₃ -OH i) CH ₃ -CH ₂ -C-CH ₃ O ii) OH CHO

33	.i)
	OH NaOH NaOH (i) CO ₂ (ii) H' OCH ₃ OCH ₃ OCH ₃ OCH ₃ COCH ₄ COCH ₄
	(i) Warm each compound with iodine and sodium hydroxide.
	Phenol: No yellow ppt formed
	Ethanol: Yellow ppt of Iodoform are formed.
34	a). (i) OH Br ₂ (aq) Br Br Br CH ₃ CH ₂ O-COCH ₃ + HCl (iii). OCH ₃ HI + CH ₃ -I
35	2,3-dinitro phenol Protonation of alkene to form carbocation by electrophilic attack of H_3O^+ . $H_2O + H^+ \rightarrow H_3O^+$ $>C = C < + H^- O^- H \Longrightarrow -C^- C < + H_2O^-$ Nucleophilic attack of water on carbocation. $H^- C^- C^+ + H_2O^- \Longrightarrow -C^- C^- C^- C^- H$ Deprotonation to form an alcohol. $H^- C^- C^- C^- C^- C^- H^- + H_2O^- \Longrightarrow -C^- C^- C^- + H_3O^+$

36	ANS (a)
37	(a)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
38	(i) The formation of ether is a nucleophilic bimolecular reaction (S,2) involving the attack of alcohol molecule on a protonated alcohol, as indicated below: H (i) CH ₃ -CH ₂ -Ö-H + H' → CH ₃ -CH ₂ -Ö-H (ii) CH ₃ CH ₂ -Ö-H + CH ₃ -CH ₂ -Ö-H + H' (iii) CH ₃ CH ₂ -Ö-CH ₂ CH ₃ → CH ₃ CH ₂ -O-CH ₂ CH ₃ + H' (iii) O-Nitrophenol (Intramolecular H-bonding) b. (i) OCH ₃ Anhyd. AlCl ₃ CS ₂ OCH ₃ 4-Methoxytoluene (Major)

(ii)

$$\begin{array}{c}
OH \\
& Na_{2}Cr_{2}O_{7} \\
& H_{2}SO_{4}
\end{array}$$
benzoquinone

(iii)

$$\begin{array}{c}
CH_{3} \\
CH_{3} - C - OH \\
& CH_{3}
\end{array}$$

$$\begin{array}{c}
CH_{3} \\
CH_{3} - C = CH_{2}
\end{array}$$

PREPARED BY:	Checked by:
Ms. JENIFER ROBINSON	HoD SCIENCE